Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2790: 213-226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38649573

RESUMO

Canopy photosynthesis (Ac), rather than leaf photosynthesis, is critical to gaining higher biomass production in the field because the daily or seasonal integrals of Ac correlate with the daily or seasonal integrals of biomass production. The canopy photosynthesis and transpiration measurement system (CAPTS) was developed to enable measurement of canopy photosynthetic CO2 uptake, transpiration, and respiration rates. CAPTS continuously records the CO2 concentration, water vapor concentration, air temperature, air pressure, air relative humidity, and photosynthetic photon flux density (PPFD) inside the chamber, which can be used to derive CO2 and H2O fluxes of a canopy covered by the chamber. This system can also be used to measure the fluxes of greenhouse gases when integrating with CH4 and N2O analyzers. Here, we describe the protocol for using CAPTS to perform experiments on rice (Oryza sativa L.) in paddy field, wheat (Triticum aestivum L.) in upland field, and tobacco (Nicotiana tabacum L.) in pots.

2.
Plant Physiol ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377473

RESUMO

As a complex trait, C4 photosynthesis has multiple independent origins in evolution. Phylogenetic evidence and theoretical analysis suggest that C2 photosynthesis, which is driven by glycine decarboxylation in the bundle sheath cell, may function as a bridge from C3 towards C4 photosynthesis. However, the exact molecular mechanism underlying the transition between C2 photosynthesis towards C4 photosynthesis remains elusive. Here, we provide evidence suggesting a role of higher α-ketoglutarate (AKG) concentration during this transition. Metabolomic data of 12 Flaveria species, including multiple photosynthetic types, show that AKG concentration initially increased in the C3-C4 intermediate with a further increase in C4 species. Petiole feeding of AKG increases the concentrations of C4 related metabolites in C3-C4 and C4 species but not the activity of C4 related enzymes. Sequence analysis shows that glutamate synthase (Fd-GOGAT), which catalyzes the generation of glutamate using AKG, was under strong positive selection during the evolution of C4 photosynthesis. Simulations with a constraint-based model for C3-C4 intermediate further show that decreasing the activity of Fd-GOGAT facilitated the transition from a C2-dominant to a C4-dominant CO2 concentrating mechanism. All these results provide insight into the mechanistic switch from C3-C4 intermediate to C4 photosynthesis.

3.
Plant Physiol ; 194(4): 2400-2421, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38180123

RESUMO

Light-induced de-etiolation is an important aspect of seedling photomorphogenesis. GOLDEN2 LIKE (GLK) transcriptional regulators are involved in chloroplast development, but to what extent they participate in photomorphogenesis is not clear. Here, we show that ELONGATED HYPOCOTYL5 (HY5) binds to GLK promoters to activate their expression, and also interacts with GLK proteins in Arabidopsis (Arabidopsis thaliana). The chlorophyll content in the de-etiolating Arabidopsis seedlings of the hy5 glk2 double mutants was lower than that in the hy5 single mutant. GLKs inhibited hypocotyl elongation, and the phenotype could superimpose on the hy5 phenotype. Correspondingly, GLK2 regulated the expression of photosynthesis and cell elongation genes partially independent of HY5. Before exposure to light, DE-ETIOLATED 1 (DET1) affected accumulation of GLK proteins. The enhanced etioplast development and photosystem gene expression observed in the det1 mutant were attenuated in the det1 glk2 double mutant. Our study reveals that GLKs act downstream of HY5, or additive to HY5, and are likely quantitatively adjusted by DET1, to orchestrate multiple developmental traits during the light-induced skotomorphogenesis-to-photomorphogenesis transition in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo , Luz , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plântula/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Semin Cell Dev Biol ; 155(Pt A): 3-9, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36858897

RESUMO

Maintaining proper metabolite levels in a complex metabolic network is crucial for maintaining a high flux through the network. In this paper, we discuss major regulatory mechanisms over the Calvin Benson Cycle (CBC) with regard to their roles in conferring homeostasis of metabolite levels in CBC. These include: 1) Redox regulation of enzymes in the CBC on one hand ensures that metabolite levels stay above certain lower bounds under low light while on the other hand increases the flux through the CBC under high light. 2) Metabolite regulations, especially allosteric regulations of major regulatory enzymes, ensure the rapid up-regulation of fluxes to ensure sufficient amount of triose phosphate is available for end product synthesis and concurrently avoid phosphate limitation. 3) A balanced activities of enzymes in the CBC help maintain balanced flux through CBC; some innate product feedback mechanisms, in particular the ADP feedback regulation of GAPDH and F6P feedback regulation of FBPase, exist in CBC to achieve such a balanced enzyme activities and hence flux distribution in the CBC for greater photosynthetic efficiency. Transcriptional regulation and natural variations of enzymes controlling CBC metabolite homeostasis should be further explored to maximize the potential of engineering CBC for greater efficiency.


Assuntos
Fosfatos , Fotossíntese , Fotossíntese/fisiologia
5.
New Phytol ; 241(1): 82-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872738

RESUMO

C4 plants typically operate a CO2 concentration mechanism from mesophyll (M) cells into bundle sheath (BS) cells. NADH dehydrogenase-like (NDH) complex is enriched in the BS cells of many NADP-malic enzyme (ME) type C4 plants and is more abundant in C4 than in C3 plants, but to what extent it is involved in the CO2 concentration mechanism remains to be experimentally investigated. We created maize and rice mutants deficient in NDH function and then used a combination of transcriptomic, proteomic, and metabolomic approaches for comparative analysis. Considerable decreases in growth, photosynthetic activities, and levels of key photosynthetic proteins were observed in maize but not rice mutants. However, transcript abundance for many cyclic electron transport (CET) and Calvin-Benson cycle components, as well as BS-specific C4 enzymes, was increased in maize mutants. Metabolite analysis of the maize ndh mutants revealed an increased NADPH : NADP ratio, as well as malate, ribulose 1,5-bisphosphate (RuBP), fructose 1,6-bisphosphate (FBP), and photorespiration intermediates. We suggest that by optimizing NADPH and malate levels and adjusting NADP-ME activity, NDH functions to balance metabolic and redox states in the BS cells of maize (in addition to ATP supply), coordinating photosynthetic transcript abundance and protein content, thus directly regulating the carbon flow in the two-celled C4 system of maize.


Assuntos
Carbono , NADH Desidrogenase , Carbono/metabolismo , NADH Desidrogenase/metabolismo , Zea mays/genética , Zea mays/metabolismo , Malatos/metabolismo , NADP/metabolismo , Dióxido de Carbono/metabolismo , Proteômica , Fotossíntese , Oxirredução , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Folhas de Planta/metabolismo
6.
Plant Direct ; 7(12): e549, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054113

RESUMO

The mesophyll cells of grass leaves, such as rice, are traditionally viewed as displaying a relatively uniform pattern, in contrast to the clear distinctions of palisade and spongy layers in typical eudicot leaves. This quantitative analysis of mesophyll cell size and shape in rice leaves reveals that there is an inherent pattern in which cells in the middle layer of the mesophyll are larger and less circular and have a distinct orientation of their long axis compared to mesophyll cells in other layers. Moreover, this pattern was observed in a range of rice cultivars and species. The significance of this pattern with relation to potential photosynthetic function and the implication of the widespread use of middle layer mesophyll cells as typical of the rice leaf have been investigated and discussed.

8.
New Phytol ; 239(6): 2180-2196, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537720

RESUMO

Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha-1 yr-1 dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C3 crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.


Assuntos
Agave , Metabolismo Ácido das Crassuláceas , Agave/metabolismo , Fotossíntese , Produtos Agrícolas/metabolismo , Carbono/metabolismo
9.
Plant Phenomics ; 5: 0075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37502446

RESUMO

Crop yield potential is intrinsically related to canopy photosynthesis; therefore, improving canopy photosynthetic efficiency is a major focus of current efforts to enhance crop yield. Canopy photosynthesis rate (Ac) is influenced by several factors, including plant architecture, leaf chlorophyll content, and leaf photosynthetic properties, which interact with each other. Identifying factors that restrict canopy photosynthesis and target adjustments to improve canopy photosynthesis in a specific crop cultivar pose an important challenge for the breeding community. To address this challenge, we developed a novel pipeline that utilizes factorial analysis, canopy photosynthesis modeling, and phenomics data collected using a 64-camera multi-view stereo system, enabling the dissection of the contributions of different factors to differences in canopy photosynthesis between maize cultivars. We applied this method to 2 maize varieties, W64A and A619, and found that leaf photosynthetic efficiency is the primary determinant (17.5% to 29.2%) of the difference in Ac between 2 maize varieties at all stages, and plant architecture at early stages also contribute to the difference in Ac (5.3% to 6.7%). Additionally, the contributions of each leaf photosynthetic parameter and plant architectural trait were dissected. We also found that the leaf photosynthetic parameters were linearly correlated with Ac and plant architecture traits were non-linearly related to Ac. This study developed a novel pipeline that provides a method for dissecting the relationship among individual phenotypes controlling the complex trait of canopy photosynthesis.

11.
Front Plant Sci ; 14: 1087768, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025150

RESUMO

The "Father of Hybrid Rice", Yuan Longping, created high-yield hybrid rice that can feed tens of millions of people annually. The research achievements of Yuan and his team on low cadmium-accumulating rice and sea rice, in addition to hybrid rice, as well as those of a large number of Chinese scientists engaged in rice research in other six areas, including the rice genome, purple endosperm rice, de novo domestication of tetraploid rice, perennial rice, rice blast disease, and key genes for high nitrogen use efficiency, play an important role in promoting the realization of the United Nations Sustainable Development Goals 2 and 12. The purpose of this review is not to elaborate on the details of each research, but to innovatively summarize the significance and inspiration of these achievements to ensure global food security and achieve sustainable agriculture. In the future, cultivating new rice varieties through modern biotechnology, such as genome editing, will not only reduce hunger, but potentially reduce human-land conflicts, improve the environment, and mitigate climate change.

12.
Rice (N Y) ; 16(1): 16, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947269

RESUMO

Tillering and yield are linked in rice, with significant efforts being invested to understand the genetic basis of this phenomenon. However, in addition to genetic factors, tillering is also influenced by the environment. Exploiting experiments in which seedlings were first grown in elevated CO2 (eCO2) before transfer and further growth under ambient CO2 (aCO2) levels, we found that even moderate exposure times to eCO2 were sufficient to induce tillering in seedlings, which was maintained in plants grown to maturity plants in controlled environment chambers. We then explored whether brief exposure to eCO2 (eCO2 priming) could be implemented to regulate tiller number and yield in the field. We designed a cost-effective growth system, using yeast to increase the CO2 level for the first 24 days of growth, and grew these seedlings to maturity in semi-field conditions in Malaysia. The increased growth caused by eCO2 priming translated into larger mature plants with increased tillering, panicle number, and improved grain filling and 1000 grain weight. In order to make the process more appealing to conventional rice farmers, we then developed a system in which fungal mycelium was used to generate the eCO2 via respiration of sugars derived by growing the fungus on lignocellulosic waste. Not only does this provide a sustainable source of CO2, it also has the added financial benefit to farmers of generating economically valuable oyster mushrooms as an end-product of mycelium growth. Our experiments show that the system is capable of generating sufficient CO2 to induce increased tillering in rice seedlings, leading eventually to 18% more tillers and panicles in mature paddy-grown crop. We discuss the potential of eCO2 priming as a rapidly implementable, broadly applicable and sustainable system to increase tillering, and thus yield potential in rice.

13.
Nat Commun ; 14(1): 290, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653415

RESUMO

Weed species are detrimental to crop yield. An understanding of how weeds originate and adapt to field environments is needed for successful crop management and reduction of herbicide use. Although early flowering is one of the weed trait syndromes that enable ruderal weeds to overcome frequent disturbances, the underlying genetic basis is poorly understood. Here, we establish Cardamine occulta as a model to study weed ruderality. By genome assembly and QTL mapping, we identify impairment of the vernalization response regulator gene FLC and a subsequent dominant mutation in the blue-light receptor gene CRY2 as genetic drivers for the establishment of short life cycle in ruderal weeds. Population genomics study further suggests that the mutations in these two genes enable individuals to overcome human disturbances through early deposition of seeds into the soil seed bank and quickly dominate local populations, thereby facilitating their spread in East China. Notably, functionally equivalent dominant mutations in CRY2 are shared by another weed species, Rorippa palustris, suggesting a common evolutionary trajectory of early flowering in ruderal weeds in Brassicaceae.


Assuntos
Brassicaceae , Herbicidas , Humanos , Animais , Brassicaceae/genética , Plantas Daninhas/genética , Solo , Estágios do Ciclo de Vida
14.
Plant Cell ; 35(5): 1334-1359, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36691724

RESUMO

Gynandropsis gynandra (Cleomaceae) is a cosmopolitan leafy vegetable and medicinal plant, which has also been used as a model to study C4 photosynthesis due to its evolutionary proximity to C3 Arabidopsis (Arabidopsis thaliana). Here, we present the genome sequence of G. gynandra, anchored onto 17 main pseudomolecules with a total length of 740 Mb, an N50 of 42 Mb and 30,933 well-supported gene models. The G. gynandra genome and previously released genomes of C3 relatives in the Cleomaceae and Brassicaceae make an excellent model for studying the role of genome evolution in the transition from C3 to C4 photosynthesis. Our analyses revealed that G. gynandra and its C3 relative Tarenaya hassleriana shared a whole-genome duplication event (Gg-α), then an addition of a third genome (Th-α, +1×) took place in T. hassleriana but not in G. gynandra. Analysis of syntenic copy number of C4 photosynthesis-related gene families indicates that G. gynandra generally retained more duplicated copies of these genes than C3T. hassleriana, and also that the G. gynandra C4 genes might have been under positive selection pressure. Both whole-genome and single-gene duplication were found to contribute to the expansion of the aforementioned gene families in G. gynandra. Collectively, this study enhances our understanding of the polyploidy history, gene duplication and retention, as well as their impact on the evolution of C4 photosynthesis in Cleomaceae.


Assuntos
Arabidopsis , Brassicaceae , Magnoliopsida , Duplicação Gênica , Magnoliopsida/genética , Brassicaceae/genética , Arabidopsis/genética , Fotossíntese/genética , Evolução Molecular
15.
New Phytol ; 237(2): 441-453, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271620

RESUMO

Leaf structure plays an important role in photosynthesis. However, the causal relationship and the quantitative importance of any single structural parameter to the overall photosynthetic performance of a leaf remains open to debate. In this paper, we report on a mechanistic model, eLeaf, which successfully captures rice leaf photosynthetic performance under varying environmental conditions of light and CO2 . We developed a 3D reaction-diffusion model for leaf photosynthesis parameterised using a range of imaging data and biochemical measurements from plants grown under ambient and elevated CO2 and then interrogated the model to quantify the importance of these elements. The model successfully captured leaf-level photosynthetic performance in rice. Photosynthetic metabolism underpinned the majority of the increased carbon assimilation rate observed under elevated CO2 levels, with a range of structural elements making positive and negative contributions. Mesophyll porosity could be varied without any major outcome on photosynthetic performance, providing a theoretical underpinning for experimental data. eLeaf allows quantitative analysis of the influence of morphological and biochemical properties on leaf photosynthesis. The analysis highlights a degree of leaf structural plasticity with respect to photosynthesis of significance in the context of attempts to improve crop photosynthesis.


Assuntos
Oryza , Oryza/metabolismo , Células do Mesofilo/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Fotossíntese
16.
Plant Commun ; 4(1): 100426, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-35986514

RESUMO

C4 photosynthesis evolved from ancestral C3 photosynthesis by recruiting pre-existing genes to fulfill new functions. The enzymes and transporters required for the C4 metabolic pathway have been intensively studied and well documented; however, the transcription factors (TFs) that regulate these C4 metabolic genes are not yet well understood. In particular, how the TF regulatory network of C4 metabolic genes was rewired during the evolutionary process is unclear. Here, we constructed gene regulatory networks (GRNs) for four closely evolutionarily related species from the genus Flaveria, which represent four different evolutionary stages of C4 photosynthesis: C3 (F. robusta), type I C3-C4 (F. sonorensis), type II C3-C4 (F. ramosissima), and C4 (F. trinervia). Our results show that more than half of the co-regulatory relationships between TFs and core C4 metabolic genes are species specific. The counterparts of the C4 genes in C3 species were already co-regulated with photosynthesis-related genes, whereas the required TFs for C4 photosynthesis were recruited later. The TFs involved in C4 photosynthesis were widely recruited in the type I C3-C4 species; nevertheless, type II C3-C4 species showed a divergent GRN from C4 species. In line with these findings, a 13CO2 pulse-labeling experiment showed that the CO2 initially fixed into C4 acid was not directly released to the Calvin-Benson-Bassham cycle in the type II C3-C4 species. Therefore, our study uncovered dynamic changes in C4 genes and TF co-regulation during the evolutionary process; furthermore, we showed that the metabolic pathway of the type II C3-C4 species F. ramosissima represents an alternative evolutionary solution to the ammonia imbalance in C3-C4 intermediate species.


Assuntos
Flaveria , Flaveria/genética , Dióxido de Carbono/metabolismo , Redes Reguladoras de Genes , Fotossíntese/genética
17.
Plant Physiol ; 191(1): 233-251, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36200882

RESUMO

Flaveria is a leading model for C4 plant evolution due to the presence of a dozen C3-C4 intermediate species, many of which are associated with a phylogenetic complex centered around Flaveria linearis. To investigate C4 evolution in Flaveria, we updated the Flaveria phylogeny and evaluated gas exchange, starch δ13C, and activity of C4 cycle enzymes in 19 Flaveria species and 28 populations within the F. linearis complex. A principal component analysis identified six functional clusters: (1) C3, (2) sub-C2, (3) full C2, (4) enriched C2, (5) sub-C4, and (6) fully C4 species. The sub-C2 species lacked a functional C4 cycle, while a gradient was present in the C2 clusters from little to modest C4 cycle activity as indicated by δ13C and enzyme activities. Three Yucatan populations of F. linearis had photosynthetic CO2 compensation points equivalent to C4 plants but showed little evidence for an enhanced C4 cycle, indicating they have an optimized C2 pathway that recaptures all photorespired CO2 in the bundle sheath (BS) tissue. All C2 species had enhanced aspartate aminotransferase activity relative to C3 species and most had enhanced alanine aminotransferase activity. These aminotransferases form aspartate and alanine from glutamate and in doing so could help return photorespiratory nitrogen (N) from BS to mesophyll cells, preventing glutamate feedback onto photorespiratory N assimilation. Their use requires upregulation of parts of the C4 metabolic cycle to generate carbon skeletons to sustain N return to the mesophyll, and thus could facilitate the evolution of the full C4 photosynthetic pathway.


Assuntos
Asteraceae , Flaveria , Flaveria/genética , Flaveria/metabolismo , Filogenia , Asteraceae/metabolismo , Dióxido de Carbono/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fotossíntese/genética , Plantas/metabolismo
18.
Curr Opin Plant Biol ; 70: 102310, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36376162

RESUMO

100-120 words. References should not be included. Abbreviations should be avoided as far as possible. Low stomatal conductance (gs) poses a major constraint for improving photosynthetic efficiency for greater yield. Options at the molecular, leaf, canopy, and even the whole plant scales can be developed to enhance gs for greater light and water use efficiencies. Among these, many genes regulating stomatal development and stomatal movement have been discovered and manipulated to increase light and water use efficiencies under well-watered, drought, or facility agriculture conditions with the manual-controlled growth environmental. Optimization of canopy conductance to increase whole plant photosynthesis with full consideration of the heterogeneities in gs, microclimates and leaf ontology inside the canopy represents a largely uncharted area to improve crop efficiency.


Assuntos
Fotossíntese , Estômatos de Plantas , Estômatos de Plantas/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Secas , Água/fisiologia
20.
Plant Phenomics ; 2022: 9758148, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059602

RESUMO

Canopy photosynthesis is the sum of photosynthesis of all above-ground photosynthetic tissues. Quantitative roles of nonfoliar tissues in canopy photosynthesis remain elusive due to methodology limitations. Here, we develop the first complete canopy photosynthesis model incorporating all above-ground photosynthetic tissues and validate this model on wheat with state-of-the-art gas exchange measurement facilities. The new model precisely predicts wheat canopy gas exchange rates at different growth stages, weather conditions, and canopy architectural perturbations. Using the model, we systematically study (1) the contribution of both foliar and nonfoliar tissues to wheat canopy photosynthesis and (2) the responses of wheat canopy photosynthesis to plant physiological and architectural changes. We found that (1) at tillering, heading, and milking stages, nonfoliar tissues can contribute ~4, ~32, and ~50% of daily gross canopy photosynthesis (A cgross; ~2, ~15, and ~-13% of daily net canopy photosynthesis, A cnet) and absorb ~6, ~42, and ~60% of total light, respectively; (2) under favorable condition, increasing spike photosynthetic activity, rather than enlarging spike size or awn size, can enhance canopy photosynthesis; (3) covariation in tissue respiratory rate and photosynthetic rate may be a major factor responsible for less than expected increase in daily A cnet; and (4) in general, erect leaves, lower spike position, shorter plant height, and proper plant densities can benefit daily A cnet. Overall, the model, together with the facilities for quantifying plant architecture and tissue gas exchange, provides an integrated platform to study canopy photosynthesis and support rational design of photosynthetically efficient wheat crops.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...